
Denis Nagayuk

(diversenok)

Attacking Assumptions
Behind the Image Load Callbacks

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

2
WHO AM I

Denis Nagayuk

 Security Researcher at

Interests:

 Windows Internals

 System Programming

 Reverse Engineering

Social media:

 diversenok

on Twitter, GitHub, Discord,

diversenok.github.io

Contributions:

NtDoc, System Informer, phnt, etc.

https://diversenok.github.io/

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

3
TOPIC

 Built-in Windows feature

 Loading DLLs maps executable images into memory

 The operation triggers a kernel callback that notifies interested drivers

 Considered a reliable mechanism

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

4
MOTIVATION

Defenders:

 Log & analyze

 Sysmon Event ID 7

 Many AV/EDR products

 Enforce custom security (code integrity) policy

 System Informer

 EDRs with custom PPL implementations

Attackers:

 Break all of the above

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

5
APPLICATION PERSPECTIVE

Works transparently:

1. LoadLibrary

2. LdrLoadDll

3. NtMapViewOfSection*

4. PsCallImageNotifyRoutines

* Section refers to a memory mapping object

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

6
SCOPE

Multiple types of memory:

 MEM_PRIVATE – NtAllocateVirtualMemory

 MEM_MAPPED – NtCreateSection with SEC_COMMIT

 MEM_IMAGE – NtCreateSection with SEC_IMAGE

Need to know what it is and what isn’t:

 Notifies about images, not any executable code

 Want to block non-image code? See Arbitrary Code Guard (ACG)

Obvious bypasses

https://learn.microsoft.com/en-us/defender-endpoint/exploit-protection-reference?view=o365-worldwide#arbitrary-code-guard

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

7
DRIVER PERSPECTIVE

 Registration is documented on MSDN

 The driver provides a function, the system invokes it

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

8
AVAILABLE INFORMATION

 Process ID 1

 Full image name (in NT format) 1

 Base address + size

 Signing level (MS binaries only)

 Some flags

 File object pointer 2

1 As the function parameter

2 In -Ex version

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

9
BEHAVIOR ESSENTIALS

 Post-operation

We do get a base address we can read

 No cancellation

Can still unmap, bearing compatibility issues (no status code change)

 Synchronous

Unlike ETW

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

10
SYNCHRONOUS BUT RACY

Pitfall alert:

 While the calling thread is stuck in kernel mode, the section is
already mapped and usable by other threads.

Thoughts:

 Might come in handy if we can prolong callback execution…

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

11
RESEARCH QUESTIONS

1. What OS mechanisms are involved?

2. What API surface and opportunities do we have for interacting
with them?

3. What assumptions does the callback delivery and payload rely on?

4. How can we violate these assumptions?

5. How can we mitigate the damage?

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

12
FILES AND SECTIONS

Mapping is a three-step process:

1. Open a file object – NtOpenFile/NtCreateFile

2. Create a section object from the file object – NtCreateSection with SEC_IMAGE

3. Map the section – NtMapViewOfSection

 Step 2 requires a file

 Step 3 requires a section, but not the file (i.e., we can close it after 2)

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

13
INDIRECTION

Extra levels of indirection:

 Makes sense from the design perspective

 More points of influence

 More caching, more opportunities for mismatch

File on disk File object
Section
object

Mapped
memory

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

14
ASSUMPTIONS

OS-level assumptions:

1. The file still exists

2. Its name is possible to query

3. The name is correct

Driver-level assumptions:

4. The file is possible to open

5. Opening yields the correct file

6. The file is possible to read

7. The content corresponds to memory

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

15
ASSUMPTION 1: FILE STILL EXISTS

Idea: Indirection gives greater control over file lifetime

Caveat: Cannot detach the file object from the section object

Solution: Make sure it doesn’t correspond to anything on disk

Effect: No file, no name to report

File on disk File object
Section
object

Mapped
memory

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

16
ATTACK 1A: EARLY DELETION

Problem: Cannot delete a file in use by a section (STATUS_CANNOT_DELETE)

Solution: Mark for deletion before creating a section

Motive: Just like Process Ghosting

Recipe:

File:

Section:

Open Mark for deletion

Create

Close

Map

Time

Callback

Here the
file is gone

Time

https://www.elastic.co/blog/process-ghosting-a-new-executable-image-tampering-attack

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

17
ATTACK 1B: SELF-DELETION

An NTFS-specific trick from Jonas Lyk for deleting locked files via stream
rotation:

 Locking applies per-stream

 Streams can be renamed

 Deleting the primary ::$DATA stream deletes all other streams

Open
::$DATA

Rename
to

:dummy
Close

Time

Open
the new
::$DATA

Mark for
deletion Close

Time

https://x.com/jonasLyk/status/1350401461985955840

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

18
ATTACK 1C: INACTIVE TRANSACTION

Idea: Transacted operations have a scope; can roll back everything.

Motive: Just like Process Doppelgänging

Recipe:

TmTx:

Section:

Open

Create

Close

Map

Time

Callback

Here the
file is gone

Time

File:

Create

Modify

Roll back

https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

19
ATTACK 1D: UNMOUNTED VOLUME

Idea: Files belong to a volume

Caveat: Need a disposable volume, preferably without admin

Recipe:

.iso:

Section:

Open

Create

Close

Map

Time

Callback

Here the file is gone

Time

Mount Unmount

File:

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

20
OBSERVING EFFECTS

 Attempting to query the name yields:

 STATUS_FILE_DELETED for attacks 1A and 1B

 STATUS_TRANSACTION_NOT_ACTIVE for attack 1C

 STATUS_VOLUME_DISMOUNTED for attack 1D

Sysmon ignores these events

File on disk File object
Section
object

Mapped
memory

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

21
ASSUMPTION 2: NAME EXISTS

Consider restrictions on filenames:

 Special characters

 Blocked by APIs

 Patched volumes give STATUS_FILE_CORRUPT_ERROR

 Length

 Overflow something?

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

22
LONG NAMES

What is the limit anyway?

260 aka. MAX_PATH?

 No, it’s a legacy Win32 limit

32767?

 Yes, but no

 Also, why this number?

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

23
LONG LONG NAMES

The limit comes from how Windows addresses strings (UNICODE_STRING):

 USHORT (0..65535) bytes in length or max 32767 wide characters

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

24
ATTACK 2A: NAME OVERFLOW

A filename consists of two parts:

 A volume name – \Device\HarddiskVolume1

 A path on the volume – \Windows\system32

Filesystem drivers deals with the on-volume path

 NTFS allows this part to be up to UNICODE_STRING limit

 The full name (after concatenation) might not fit!

 The file exists but impossible to open by full name. Only relative.

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

25
HOW NAME OVERFLOW LOOKS

 Sysmon either fails with integer overflow or reports a broken name

The handle looks cursed…

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

26
ASSUMPTION 3: THE NAME IS CORRECT

 Problem with filenames: they are non-owning references

After rename:

 Cached names (strings) become outdated

 But what about queries against file and section objects?

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

27
RENAME TRACKING

Sections: Always ask the underlying file object

File objects: Depends on the filesystem…

Experiment: Open, rename, query name

Rename on… NTFS \Device\Mup

The same handle Updated Outdated

Another handle Updated Outdated

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

28
ATTACK 3A: MUP RENAME

LanmanRedirector (a Multiple UNC Provider) does not track renames

 \Device\Mup\localhost\C$\...

 \\localhost\C$\...

Recipe:

File:

Section:

Open Rename

Create

Close

Map

Callback

Time

Still reports the old name

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

29
HARD LINKS

Hard links:

 Allow multiple names for the same on-disk file

 Creation is similar to renaming but leaves the old name behind

Question:

 Two hard links, refer to the same content. We map both.

 Which name will we get?

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

30
HARD LINKS & SECTIONS

Answer:

 Whichever file object happened to get cached in the section

 Usually not a problem (still the same content)

File on disk

File object
Section
object

Mapped
memory

File object
Section
object

Mapped
memory

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

31
HARD LINK DELETION

Annoying issue:

 Can hardlink locked files but cannot delete (undo)

 Trying to set FileDispositionInformation returns STATUS_CANNOT_DELETE

Solution:

 FileDispositionInformationEx (since RS1) can

Rules:

 Non-Ex is -Ex plus FILE_DISPOSITION_FORCE_IMAGE_SECTION_CHECK

 Omitting allows deleting hard links, up until the last one.

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

32
ATTACK 3B: HARD LINK DELETION

Primitive 1: Can choose which hard link name to return from section

Primitive 2: Can delete names until there is only one left

Recipe:

File A:

Section:

Hardlink

Create

Close

Map

Time

Callback

Time

File B:

Open Close

Mark for deletionOpen

Cached name B

Broken rename
tracking!

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

33
THE X64DBG BUG REPORT

A user opened an issue (#2990) in x64dbg.

 x64dbg failed to resolve a file reported by an image load debug event

 Looks like the event returns a stale name

The user accidentally discovered an attack on rename tracking.

See the discussion on winsiderss Discord.

https://github.com/x64dbg/x64dbg/issues/2990
https://discord.com/channels/974725285494784042/1321926219318562939

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

34
ATTACK 3C: PARENT RENAME

Problem: Cannot rename a parent directory if there are file handles inside

Solution: Keep a section handle instead

Recipe:

Directory:

Section: Create

Close

Map

Time

Callback

Time

File:

Open Close

Open

Rename

Broken rename
tracking!

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

35
ASSUMPTION 4: POSSIBLE TO OPEN

Now to driver assumptions. Anything can prevent opening?

 Security descriptors
 A user-mode concern; even admins can bypass

 Sharing mode
 Drivers can bypass

 Can also be self-inflicted

 Like an antivirus that fails to scan a file if somebody has a DELETE handle to it.

 EFS

 Remember the trick for encrypting Defender’s executable so it cannot start?

https://x.com/jonasLyk/status/1571771017919438851

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

36
OPLOCKS

The favorite mechanism for winning race conditions.

 Oplocks can postpone open until acknowledgement (indefinitely)

 Many different types

 Covering open, write, delete

 Batch oplocks

 Everything beyond FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES | SYNCHRONIZE

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

37
ATTACK 4A: OPLOCKS

Idea: Abuse post-operationness

Caveat: Need to sacrifice a thread

Recipe:

File:

Section:

Open Oplock

Create Map

TimeTime

…

Callback is stuck
trying to open the file

…

Use memory from
another thread

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

38
ATTACK 4B: DELETE-PENDING

Idea: Opening files marked for deletion fails with STATUS_DELETE_PENDING

Recipe:

File:

Section:

Open Mark for deletion

Create Map

TimeTime

CloseCancel deletion

Cannot reopen the file

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

39
ASSUMPTION 5: OPENS THE RIGHT FILE

The correct name is not enough. Also need it to be:

 Not ambiguous

 Not redirected

Ways to redirect:

 Junctions

 Namespace symlinks

 Filesystem symlinks

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

40
ATTACK 5A: MUP & JUNCTIONS

Problem: We receive the name after reparse point resolution

Solution: Maybe on NTFS, but not on \Device\Mup

Recipe:

Junction:

Section:

Open (follow)

Create

Close

Map

Time

Callback

Time

File:

Set Modify

Still returns the old name
Which now points
somewhere else

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

41
ATTACK 5B: TRANSACTIONAL AMBIGUITY

Idea: Transactions allow one “file” to be in two states at once.

Problem: A filename is not enough without transactional context.

Recipe:

TmTx:

Section:

Open

Create

Close

Map

Time

Callback

Time

File:

Create

Modify

…

The name is
ambiguous

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

42
ASSUMPTION 6: POSSIBLE TO READ

Want to hash the file? Need to read after opening.

Memory:

 Race and set PAGE_GUARD

File:

 Somehow cause an error?

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

43
ATTACK 6A: BYTE LOCKS

Idea: NtLockFile can grab ranges for exclusive access

Caveat: Blocks NtReadFile (STATUS_FILE_LOCK_CONFLICT) but not mapped I/O

Recipe:

File:

Section:

Open Lock

Create Map

TimeTime

CloseUnlock

Cannot read

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

44
ASSUMPTION 7: FILE & MEMORY MATCH

Mapped image memory is copy-on-write – extra caching.

More attacks:

 False Immutability (by Gabriel Landau)

 Process Herpaderping (by Johnny Shaw)

This margin is too narrow… Maybe another time

https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

45
THE SYSTEM INFORMER CASE

Remember Process Hacker?

 An open-source Windows internals-oriented task manager

 Had a driver for extra capabilities

 The driver requires admin, but MS and vendors were not happy.

System Informer – an updated version under Winsider Seminars &
Solutions. The new driver respects PPL for modifications but still
offers great insight.

https://github.com/winsiderss/systeminformer

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

46
DRIVER HARDENING

Goal: Need to protect from abuse

Problem: Cannot use PPL (not antimalware)

Extras: Want to support plugins

Need to re-invent protections:

 Process & thread handle filtration via Ob- callbacks

 Custom code integrity for plugins via image load notifications

 Two-phase restart

 Mitigations

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

47
ATTACKS THAT WORKED

Challenge: Plant an unsigned plugin to be recognized as signed

Solutions: Name desync, content desync, open redirection.

Example:

1. Prepare an unsigned.dll with a section that cached signed.dll’s name.

2. Start System Informer

3. It will load unsigned.dll but validate signature for signed.dll

4. Since there are no unsigned plugins, the driver allows sensitive operations.

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

48
MITIGATIONS: FUNDAMENTALS

 Always look for the -Ex version of the structure!

 It gives a file object

No, it doesn’t solve all the problems

 The object is in cleanup phase and barely usable

Johnny Shaw and I looked into reopening the file from this object
(so we don’t have to deal with filenames), but no luck – need a
handle, not an object pointer (and cannot upgrade).

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

49
MITIGATIONS: QUERYING NAMES

 Try querying harder:

 NtQueryVirtualMemory with MemoryMappedFilenameInformation
does not have a UNICODE_STRING limit

 Also distinguishes deleted/unmounted/etc. via returned status

 FltGetFileNameInformationUnsafe can return a different result

 Explicitly choose what to do with non-existing files

 Ignore? Abort? Assume the worst?

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

50
MITIGATIONS: OPENING FILES

 Avoid access checks via Zw- and Io- functions

 Bypass sharing mode via IO_IGNORE_SHARE_ACCESS_CHECK

 Be aware of transactions (check them on the file object)

 Use FILE_COMPLETE_IF_OPLOCKED and check for
STATUS_OPLOCK_BREAK_IN_PROGRESS

 Use OBJ_DONT_REPARSE if need to avoid redirection (bearing
compatibility issues)

 Compare file objects similar to NtAreMappedFilesTheSame

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

51
MITIGATIONS: READING CONTENT

 Just don’t depend on it. Validate memory, not file.

 Be ready to switch to mapped I/O on STATUS_FILE_LOCK_CONFLICT

 Do image coherency checks (see System Informer’s code)

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

52
NOT A VULNERABILITY

Look at Windows Code Integrity

 Provides signing levels and validation for PPL, PP, and kernel drivers

 Does not suffer from these attacks

 Validates memory, cares little about data on disk

 Not too optimistic to grant “success” on signature validation anomalies

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

53
TAKEAWAY

Interesting and powerful mechanism with lots of caveats.

More possibilities than expected.

Tools:

 FileTest – covers 95% of what you need

 Sysmon event ID 7 “Image loaded” for experiments

Thanks:

Johnny Shaw – in-depth dives into mitigations & driver hardening

http://www.zezula.net/en/tools/filetest.html
http://www.zezula.net/en/tools/filetest.html
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon#event-id-7-image-loaded
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon#event-id-7-image-loaded
https://github.com/jxy-s

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

54
MORE CONTENT

My blog post: Bypassing FileBlockExecutable in Sysmon 14: A Lesson In Analyzing Assumptions
https://www.huntandhackett.com/blog/bypassing-sysmon

Gabriel Landau’s blog post: Introducing a New Vulnerability Class: False File Immutability
https://www.elastic.co/security-labs/false-file-immutability

Johnny Shaw’s blog post: Process Herpaderping
https://jxy-s.github.io/herpaderping/

James Forshaw’s blog post: Windows Exploitation Tricks: Trapping Virtual Memory Access
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html

Gergely Kalman’s talk: The forgotten art of filesystem magic.
https://gergelykalman.com/slides/the_forgotten_art_of_filesystem_magic.pdf

Gergely Kalman’s talk: The missing guide to the security of filesystems and file APIs
https://gergelykalman.com/slides/the_missing_guide_to_filesystem_security_v1.pdf

https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://gergelykalman.com/slides/the_forgotten_art_of_filesystem_magic.pdf
https://gergelykalman.com/slides/the_missing_guide_to_filesystem_security_v1.pdf

Want me to look at your security product?
Send a message to denis.nagayuk@huntandhackett.com

Thank you for your attention!
Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

@diversenok

	Introduction
	Slide 1
	Slide 2: Who Am I
	Slide 3: Topic
	Slide 4: Motivation
	Slide 5: Application Perspective
	Slide 6: Scope
	Slide 7: Driver Perspective
	Slide 8: Available Information
	Slide 9: Behavior Essentials
	Slide 10: Synchronous But Racy
	Slide 11: Research Questions
	Slide 12: Files and Sections
	Slide 13: Indirection
	Slide 14: Assumptions

	Assumption 1: File Still Exists
	Slide 15: Assumption 1: File still Exists
	Slide 16: Attack 1a: Early Deletion
	Slide 17: Attack 1b: Self-Deletion
	Slide 18: Attack 1c: Inactive Transaction
	Slide 19: Attack 1d: Unmounted Volume
	Slide 20: Observing Effects

	Assumption 2: Name Exists
	Slide 21: Assumption 2: Name Exists
	Slide 22: Long Names
	Slide 23: Long Long Names
	Slide 24: Attack 2a: Name Overflow
	Slide 25: How Name Overflow Looks

	Assumption 3: The Name Is Correct
	Slide 26: Assumption 3: The Name Is Correct
	Slide 27: Rename Tracking
	Slide 28: Attack 3a: MUP rename
	Slide 29: Hard Links
	Slide 30: Hard Links & Sections
	Slide 31: Hard Link Deletion
	Slide 32: Attack 3b: Hard Link Deletion
	Slide 33: The x64dbg Bug Report
	Slide 34: Attack 3c: Parent Rename

	Assumption 4: Possible To Open
	Slide 35: Assumption 4: Possible To Open
	Slide 36: Oplocks
	Slide 37: Attack 4a: Oplocks
	Slide 38: Attack 4b: Delete-Pending

	Assumption 5: Opens The Right File
	Slide 39: Assumption 5: Opens The Right FIle
	Slide 40: Attack 5a: MUP & Junctions
	Slide 41: Attack 5B: Transactional Ambiguity

	Assumption 6: Possible To Read
	Slide 42: Assumption 6: Possible To Read
	Slide 43: Attack 6a: Byte Locks

	Assumption 7: File & Memory Match
	Slide 44: Assumption 7: File & Memory match

	The System Informer Case
	Slide 45: The System Informer Case
	Slide 46: Driver Hardening
	Slide 47: Attacks that Worked

	Mitigations
	Slide 48: Mitigations: Fundamentals
	Slide 49: Mitigations: Querying Names
	Slide 50: Mitigations: Opening Files
	Slide 51: Mitigations: Reading Content
	Slide 52: Not a Vulnerability

	Conclusions
	Slide 53: Takeaway
	Slide 54: More Content
	Slide 55

