Attacking Assumptions

Behind the Image Load Callbacks

Denis Nagayuk
(diversenok)

. A

Denis Nagayuk

* Security Researcher at

HUNT
HACKETT

Interests:
* Windows Internals
- System Programming

 Reverse Engineering

Social media:

diversenok.github.io

Contributions:

NtDoc, System Informer, phnt, etc.

https://diversenok.github.io/

* Built-in Windows feature
* Loading DLLs maps executable images into memory
* The operation triggers a kernel callback that notifies interested drivers

- Considered a reliable mechanism

C++ I Copy

NTSTATUS PsSetlLoadImageNotifyRoutine(
[in] PLOAD_IMAGE NOTIFY_ROUTINE NotifyRoutine

) g

= ATIC

Defenders:

 Log & analyze
- Sysmon Event ID 7
* Many AV/EDR products

* Enforce custom security (code integrity) policy
* System Informer
* EDRs with custom PPL implementations

Attackers:

- Break all of the above

N\ DL A ' [

B2 Stack - thread 14320
#° Name A
4 SysmonDrv.sys+0x10514
5 ntoskrnl.exe!PsCaIIImacljeNotifyRoutines+Ox165
6 ntoskrnl.exe!MiMapViewOfImageSection+0x74d
7 ntoskrnl.exe!MiMapViewOfSection+0x3fc
8 ntoskrnl.exe!NtMapViewOfSection+0x159
9 ntoskrnl.exe!KiSystemServiceCopyEnd+0x25
10 ntdll.dI'NtMapViewOfSection+0x14
11 ntdll.dIl'LdrpMinimalMapModule+0x10a
12 ntdll.dll'LdrpMapDIIWithSectionHandle+0x1a
13 ntdll.dIl'LdrpMapDIINtFileName+0x19f
14 ntdll.dIl'LdrpMapDIIFullPath+0xe0
15 ntdll.dll'LdrpProcessWork+0x123
16 ntdll.dll!lLdrpLoadDllInternal+0x13f
17 ntdll.dll'LdrpLoadDIl+0xa8
18 ntdll.dll'LdrLoadDIl+0xe4
19 KernelBase.dll'LoadLibraryExW+0x162

Options Copy Refresh Close

Works transparently:

1. LoadLibrary

2. LdrLoadDll

3. NtMapViewOfSection*

4. PsCalllmageNotifyRoutines

* Section refers to a memory mapping object

Multiple types of memory:
8 - MEM_PRIVATE — NtAllocateVirtualMemory
% - MEM_MAPPED - NtCreateSection with SEC_COMMIT } Obvious bypasses
v/ * MEM_IMAGE - NtCreateSection with SEC_IMAGE

Need to know what it is and what isnt:
* Notifies about images, not any executable code

* Want to block non-image code? See Arbitrary Code Guard (ACG)

https://learn.microsoft.com/en-us/defender-endpoint/exploit-protection-reference?view=o365-worldwide#arbitrary-code-guard

* Registration is documented on MSDN

* The driver provides a function, the system invokes it

C++

™ Copy
PLOAD_IMAGE_NOTIFY_ROUTINE PloadImageNotifyRoutine;

VOID PloadImageNotifyRoutine(
[in, optional] PUNICODE_STRING FullImageName,
[in] HANDLE ProcessId,
[in] PIMAGE_INFO ImagelInfo

A A A: .. A .

C++ I Copy

Process ID 2

typedef struct _IMAGE_INFO {

union { * Full image name (in NT format) *
ULONG Properties;
struct { .
ULONG ImageAddressingMode : 8;) Base address + SlZe

ULONG SystemModeImage : 1;
ULONG ImageMappedToAllPids : 1;
ULONG ExtendedInfoPresent : 1;
ULONG MachineTypeMismatch : 1;
ULONG ImageSignaturelLevel : 4; Some flags
ULONG ImageSignatureType : 3;
ULONG ImagePartialMap : 1;

ULONG Reserved : 12; Flle ObJeCt pOInter .
};
};
PVOID ImageBase;
ULONG ImageSelector;
SIZE_T ImageSize;
ULONG ImageSectionNumber;
} IMAGE_INFO, *PIMAGE_INFO;

Signing level (MS binaries only)

1 As the function parameter

2 |n -Ex version

A
>
an
v
>

* Post-operation
We do get a base address we can read

* No cancellation
Can still unmap, bearing compatibility issues (no status code change)

* Synchronous
Unlike ETW

BYA

Pitfall alert:

* While the calling thread is stuck in kernel mode, the section is
already mapped and usable by other threads.

Thoughts:

* Might come in handy if we can prolong callback execution...

e)

-
L

Y
e

s

. What OS mechanisms are involved?

. What API surface and opportunities do we have for interacting
with them?

. What assumptions does the callback delivery and payload rely on?

7

. How can we violate these assumptions?

. How can we mitigate the damage?

Mapping is a three-step process:
1. Open a file object - NtOpenFile/NtCreateFile

2. Create a section object from the file object — NtCreateSection with SEC_IMAGE

3. Map the section — NtMapViewOfSection

* Step 2 requires a file

* Step 3 requires a section, but not the file (i.e., we can close it after 2)

Extra levels of indirection:
* Makes sense from the design perspective
* More points of influence

* More caching, more opportunities for mismatch

Fileondisk— File object | ;l >ection _ Mapped

object memory

A » '

OS-level assumptions:

1. Thefile still exists

2. lts name s possible to query
3. Thename s correct
Driver-level assumptions:

4. Thefileis possible to open

5. Opening yields the correct file
6. Thefileispossible to read

7. The content corresponds to memory

A DTIO
ldea: Indirection gives greater control over file lifetime
Caveat: Cannot detach the file object from the section object

Solution: Make sure it doesn’t correspond to anything on disk

Effect: No file, no name to report

. . . . Section Mapped
F|Ieond|sk* File object | ;l object _ memory

N [T

A A A I\ I . '
9,
Problem: Cannot delete afile in use by a section (STATUS_CANNOT_DELETE)
Solution: Mark for deletion before creating a section
Motive: Just like Process Ghosting
= Here the
Recipe: file is gone
|
_ | Callback
File: Open Mark for deletion Close \
|
| } .
>ection. Create : Map
Time | > Time

https://www.elastic.co/blog/process-ghosting-a-new-executable-image-tampering-attack

O
An NTFS-specific trick from Jonas Lyk for deleting locked files via stream
rotation:
* Locking applies per-stream
* Streams can be renamed
* Deleting the primary ::$DATA stream deletes all other streams
Open Rename }?pen Mark for
-sDATA to Close the new deletion lose
:dummy :$DATA
Time | > Time

&

https://x.com/jonasLyk/status/1350401461985955840

A A D A A 5
O
ldea: Transacted operations have a scope; can roll back everything.
Motive: Just like Process Doppelganging
_ Here the
Recipe: file is gone
|
ImTx: | Create Roll back
‘ : Callback
File: Open Modify Close | \
|
! .
Section: Create : Map
Time | > Time

P Aceocking 2

https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf

A . = S D VO
O
ldea: Files belong to a volume
Caveat: Need a disposable volume, preferably without admin
Recipe: Here the file is gone
I
1S0: Mount Unmount
J : Callback
File: Open Close | \
I
4 .
Section: Create : Map
Time | > Time

&

- Attempting to query the name yields:
- STATUS _FILE_DELETED for attacks 1A and 1B
- STATUS_TRANSACTION_NOT_ACTIVE for attack 1C
* STATUS_VOLUME_DISMOUNTED for attack 1D

Sysmon ignores these events

File on disk * File object | ;l Sec_tlon
object

__ Mapped

memory

Consider restrictions on filenames:

* Special characters
* Blocked by APIs
* Patched volumes give STATUS_FILE_CORRUPT_ERROR

* Length
* Overflow something?

. A

What is the limit anyway?

260 aka. MAX_PATH?
* No, it's a legacy Win32 limit

32767
* Yes, but no

* Also, why this number?

°)
°)

"
"

The limit comes from how Windows addresses strings (UNICODE_STRING):
* USHORT (0..65535) bytes in length or max 32767 wide characters

™ Copy

typedef struct UNICODE_STRING {
USHORT Length;
USHORT MaximumlLength;
PWSTR Buffer;

} UNICODE_STRING, *PUNICODE_STRING;

A A A A ' » .

A filename consists of two parts:
- Avolume name —\Device\HarddiskVolume1

* A path on the volume —\Windows\system32

Filesystem drivers deals with the on-volume path
* NTFS allows this part to be up to UNICODE_STRING limit
* The full name (after concatenation) might not fit!

* The file exists but impossible to open by full name. Only relative.

= . S _REFLCU DU b

* Sysmon either fails with integer overflow or reports a broken name
Event 255, Sysmon

x
General Details

Error report:

UtcTime: 2025-09-26 09:39:38.413

ID: EventProcess

Description: Failed to process event SYSMONEVENT_IMAGE_LOAD - Last error: Arithmetic result exceeded 32 bits.

Options File] Aa J* £

Handle Type Name Original name Granted access (symbolic)
0x30c File \Devic \Devic Read data, Synchronize
0x308 File X\

\Device\HarddiskVolume14\ Read data, Synchronize

The handle looks cursed...

* Problem with filenames: they are non-owning references

After rename:
* Cached names (strings) become outdated

* But what about queries against file and section objects?

°)
°)

-

"

Sections:
File objects:

Experiment:

DA

Always ask the underlying file object

Depends on the filesystem...

Open, rename, query name

Rename on... NTFS \Device\Mup
The same handle v/ Updated % Outdated
Another handle v/ Updated 8 Outdated

LanmanRedirector (a Multiple UNC Provider) does not track renames

*\Device\Mup\localhost\Cs\...

\\localhost\Cs\... Still reports the old name
A
Recipe: : \I
i Callback !
File: Open Rename l Close :
- \
- :

>ection: | Create Map I

Time | >

ARD
Hard links:
* Allow multiple names for the same on-disk file
* Creation is similar to renaming but leaves the old name behind
Question:
* Two hard links, refer to the same content. We map both.
* Which name will we get?
0

S
"

0.0
(M

AR

Answer:

* Whichever file object happened to get cached in the section

* Usually not a problem (still the same content)

G > Section (Mapped

- o " File object object memory
ile on dis

“ . . Section Mapped

File object | object _ memory

ARD B =

Annoying issue:

- Can hardlink locked files but cannot delete (undo)

* Trying to set FileDispositioninformation returns STATUS_CANNOT_DELETE
Solution:

* FileDispositionInformationEx (since RS1) can

Rules:

* Non-Ex is -Ex plus FILE_DISPOSITION_FORCE_IMAGE_SECTION_CHECK

 Omitting allows deleting hard links, up until the last one.

AR)

Primitive 1: Can choose which hard link name to return from section

Primitive 2: Can delete names until there is only one left

Recipe: Cached nameB
|
Frea | o ik | Close Broken rename
e A: pen Haralin | tracking!
‘ : l Callback
File B: Open I Mark for deletion Close \
I ;
Section: Create : I Map
Time | I :

&

A user opened an issue (#2990) in x64dbg.

* X64dbg failed to resolve a file reported by an image load debug event

- Looks like the event returns a stale name

The user accidentally discovered an attack on rename tracking.

See the discussion on winsiderss Discord. .

https://github.com/x64dbg/x64dbg/issues/2990
https://discord.com/channels/974725285494784042/1321926219318562939

OA D

hs

Problem: Cannot rename a parent directory if there are file handles inside

Solution: Keep a section handle instead

Recipe:

Directory:

File:

Section:

Broken rename

tracking!
Open Rename : Close
‘ : Callback
Open Close l
; : A}
Create : Map

Time |

P Aceocking 2

. P [C 40 O OF

Now to driver assumptions. Anything can prevent opening?

* Security descriptors
* A user-mode concern; even admins can bypass

* Sharing mode
* Drivers can bypass

* Can also be self-inflicted
* Like an antivirus that fails to scan afile if somebody has a DELETE handle to it.

- EFS
* Remember the trick for encrypting Defender’s executable so it cannot start?

https://x.com/jonasLyk/status/1571771017919438851

The favorite mechanism for winning race conditions.
* Oplocks can postpone open until acknowledgement (indefinitely)

 Many different types
* Covering open, write, delete

* Batch oplocks

* Everything beyond FiLE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES | SYNCHRONIZE

A A A . D '
ldea: Abuse post-operationness
Caveat: Need to sacrifice a thread Use memory from
Recipe: another thread

Callback is stuck
trying to open the file

File: Open Oplock \

Section: Create Map

Time |

>
>
A
iy
U
iy

Idea: Opening files marked for deletion fails with STATUS_DELETE_PENDING

Recipe:
Cannot reopen the file
A
f \
| |
File: Open Mark for deletion 1 I Cancel deletion Close
T X
Section: Create Map
Time | > Time

& Atta gA old[e pe dthe age Load Caliba Pe aga diverseno

A » ' '. »

The correct name is not enough. Also need it to be:
* Not ambiguous

- Not redirected

Ways to redirect:
- Junctions
* Namespace symlinks

* Filesystem symlinks

L

Problem: We receive the name after reparse point resolution
Solution: Maybe on NTFS, but not on \Device\Mup
Recipe: Still returns the old name
I Which now points
Junction: | Set Modify [~ Somewhereelse
‘ | Callback
File: Open (follow) Close : \
4 l
Section: Create : Map
Time | > Time

&

W%
A A : DA A ' A A :
e,
Idea: Transactions allow one “file” to be in two states at once.
Problem: A filename is not enough without transactional context.
Recipe: The nameiis
ambiguous
ImTx: | Create :
|
_ ‘ Callback |
File: Open Modify Close I
|
! & |
Section: Create Map
Time | > Time

& Atta gA old[e pe dthe age Load Caliba Pe aga diverseno :

2 P [ION 6: PC U R

Want to hash the file? Need to read after opening.

Memory:
- Race and set PAGE_GUARD
File:

- Somehow cause an error?

\D

°)
°)

-

"

ATTACK 6A: B =

Idea: NtLockFile can grab ranges for exclusive access

Caveat: Blocks NtReadFile (STATUS_FILE_LOCK_CONFLICT) but not mapped I/O

Recipe:
Cannot read
A
f \
| |
File: Open Lock 1 I Unlock Close
I : X
Section: Create | Map
Time | > Time

. P [C & OR .

Mapped image memory is copy-on-write — extra caching.
More attacks:

* False Immutability (by Gabriel Landau)

* Process Herpaderping (by Johnny Shaw)

This margin is too narrow... Maybe another time

S

https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/

Remember Process Hacker?
* An open-source Windows internals-oriented task manager
* Had a driver for extra capabilities

* The driver requires admin, but MS and vendors were not happy.

System Informer — an updated version under Winsider Seminars &
Solutions. The new driver respects PPL for modifications but still
offers great insight.

https://github.com/winsiderss/systeminformer

DR = ARD

Goal: Need to protect from abuse
Problem: Cannotuse PPL (not antimalware)
Extras: Want to support plugins

Need to re-invent protections:

* Process & thread handle filtration via Ob- callbacks

* Custom code integrity for plugins via image load notifications
 Two-phase restart

 Mitigations

A A A .. .

Challenge: Plantan unsigned plugin to be recognized as signed

Solutions: Name desync, content desync, open redirection.

Example:

1.

2.

3.

Prepare an unsigned.dll with a section that cached signed.dll's name.
Start System Informer
It will load unsigned.dll but validate signature for signed.dll

Since there are no unsigned plugins, the driver allows sensitive operations.

* Always look for the -Ex version of the structure!
* It gives a file object

No, it doesn’t solve all the problems
* The objectis in cleanup phase and barely usable

Johnny Shaw and | looked into reopening the file from this object
(so we don't have to deal with filenames), but no luck — need a
handle, not an object pointer (and cannot upgrade).

* Try querying harder:

* NtQueryVirtualMemory with MemoryMappedFilenamelnformation
does not have a UNICODE_STRING limit

* Also distinguishes deleted/unmounted/etc. via returned status
* FltGetFileNamelnformationUnsafe can return a different result

* Explicitly choose what to do with non-existing files
* Ignore? Abort? Assume the worst?

A . '-

- Avoid access checks via Zw- and lo- functions

* Bypass sharing mode via IO_IGNORE_SHARE_ACCESS_CHECK
* Be aware of transactions (check them on the file object)

- Use FILE_COMPLETE_IF_OPLOCKED and check for
STATUS_OPLOCK BREAK IN_PROGRESS

* Use OBJ_DONT_REPARSE if need to avoid redirection (bearing
compatibility issues)

 Compare file objects similar to NtAreMappedFilesTheSame

* Just don’t depend on it. Validate memory, not file.
* Be ready to switch to mapped I/O on STATUS_FILE_LOCK_CONFLICT

Do image coherency checks (see System Informer’s code)

Look at Windows Code Integrity

* Provides signing levels and validation for PPL, PP, and kernel drivers
* Does not suffer from these attacks

* Validates memory, cares little about data on disk

* Not too optimistic to grant “success” on signature validation anomalies

Interesting and powerful mechanism with lots of caveats.
More possibilities than expected.
Tools:

* FileTest — covers 95% of what you need

* Sysmon event ID 7 "Image loaded” for experiments

Thanks:

Johnny Shaw — in-depth dives into mitigations & driver hardening

& Atta gA old[e pe dthe age Load Caliba Pe aga diverseno

hs

O

@ FileTest (User:

NtFileInfo
Transa: ction

"diversenok”, restricted) — [} H
MtVolinfo MNtEa Security Links Streams I0CTL
CreateFile NtCreateFie ReadWrite Mapping File Ops

Input parameters of MtCreateFile

Relative File:

File name

ObjectAttr.Flags: | 00000040

| (Mo Relative File)

|2

| -

Desired access: | 00100001

Alocationsize: | 000000D000000000

Fie atrbutes; | 00000080

Share access: | Q0000007

Create disposition: | [1] FILE_OPEN (if exists, open, else fail) ~
Create options: | 00000020 =
Extended atir: | {Ea = 0000000000000000, Length = 0} |

Privileges ...

Result
Status:

File handle:

ToStatus. Info:

Transacted (reguires Windows Vista+ and an active transaction)
[JEnahble file virtualization (requires Windows Vista +)
[Breakpoint right before call to NtCreate

Make directory MNtCreateFile MtClose

| STATUS_SUCCESS |

|00000000000002E8 |

| FILE_OPENED |

http://www.zezula.net/en/tools/filetest.html
http://www.zezula.net/en/tools/filetest.html
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon#event-id-7-image-loaded
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon#event-id-7-image-loaded
https://github.com/jxy-s

My blog post: Bypassing FileBlockExecutable in Sysmon 14: A Lesson In Analyzing Assumptions
https://www.huntandhackett.com/blog/bypassing-sysmon

Gabriel Landau’s blog post: Introducing a New Vulnerability Class: False File Immutability
https://www.elastic.co/security-labs/false-file-immutability

Johnny Shaw’s blog post: Process Herpaderping
https://jxy-s.github.io/herpaderping/

James Forshaw’s blog post: Windows Exploitation Tricks: Trapping Virtual Memory Access
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html

Gergely Kalman’s talk: The forgotten art of filesystem magic.
https://gergelykalman.com/slides/the forgotten art of filesystem magic.pdf

Gergely Kalman’s talk: The missing guide to the security of filesystems and file APIs
https://gergelykalman.com/slides/the missing guide to filesystem security vai.pdf

https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://gergelykalman.com/slides/the_forgotten_art_of_filesystem_magic.pdf
https://gergelykalman.com/slides/the_missing_guide_to_filesystem_security_v1.pdf

Thank you for your attention!

Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

&4 @diversenok

Want me to look at your security product?
Send a message to denis.nagayuk@huntandhackett.com

	Introduction
	Slide 1
	Slide 2: Who Am I
	Slide 3: Topic
	Slide 4: Motivation
	Slide 5: Application Perspective
	Slide 6: Scope
	Slide 7: Driver Perspective
	Slide 8: Available Information
	Slide 9: Behavior Essentials
	Slide 10: Synchronous But Racy
	Slide 11: Research Questions
	Slide 12: Files and Sections
	Slide 13: Indirection
	Slide 14: Assumptions

	Assumption 1: File Still Exists
	Slide 15: Assumption 1: File still Exists
	Slide 16: Attack 1a: Early Deletion
	Slide 17: Attack 1b: Self-Deletion
	Slide 18: Attack 1c: Inactive Transaction
	Slide 19: Attack 1d: Unmounted Volume
	Slide 20: Observing Effects

	Assumption 2: Name Exists
	Slide 21: Assumption 2: Name Exists
	Slide 22: Long Names
	Slide 23: Long Long Names
	Slide 24: Attack 2a: Name Overflow
	Slide 25: How Name Overflow Looks

	Assumption 3: The Name Is Correct
	Slide 26: Assumption 3: The Name Is Correct
	Slide 27: Rename Tracking
	Slide 28: Attack 3a: MUP rename
	Slide 29: Hard Links
	Slide 30: Hard Links & Sections
	Slide 31: Hard Link Deletion
	Slide 32: Attack 3b: Hard Link Deletion
	Slide 33: The x64dbg Bug Report
	Slide 34: Attack 3c: Parent Rename

	Assumption 4: Possible To Open
	Slide 35: Assumption 4: Possible To Open
	Slide 36: Oplocks
	Slide 37: Attack 4a: Oplocks
	Slide 38: Attack 4b: Delete-Pending

	Assumption 5: Opens The Right File
	Slide 39: Assumption 5: Opens The Right FIle
	Slide 40: Attack 5a: MUP & Junctions
	Slide 41: Attack 5B: Transactional Ambiguity

	Assumption 6: Possible To Read
	Slide 42: Assumption 6: Possible To Read
	Slide 43: Attack 6a: Byte Locks

	Assumption 7: File & Memory Match
	Slide 44: Assumption 7: File & Memory match

	The System Informer Case
	Slide 45: The System Informer Case
	Slide 46: Driver Hardening
	Slide 47: Attacks that Worked

	Mitigations
	Slide 48: Mitigations: Fundamentals
	Slide 49: Mitigations: Querying Names
	Slide 50: Mitigations: Opening Files
	Slide 51: Mitigations: Reading Content
	Slide 52: Not a Vulnerability

	Conclusions
	Slide 53: Takeaway
	Slide 54: More Content
	Slide 55

