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WHO AM I

Denis Nagayuk

 Security Researcher at 

Interests:

 Windows Internals

 System Programming

 Reverse Engineering

Social media:

            diversenok 

on Twitter, GitHub, Discord,

diversenok.github.io

Contributions:

NtDoc, System Informer, phnt, etc.

https://diversenok.github.io/
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TOPIC

 Built-in Windows feature

 Loading DLLs maps executable images into memory

 The operation triggers a kernel callback that notifies interested drivers

 Considered a reliable mechanism
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MOTIVATION

Defenders:

 Log & analyze

 Sysmon Event ID 7

 Many AV/EDR products

 Enforce custom security (code integrity) policy

 System Informer

 EDRs with custom PPL implementations

Attackers:

 Break all of the above
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APPLICATION PERSPECTIVE

Works transparently:

1. LoadLibrary

2. LdrLoadDll

3. NtMapViewOfSection*

4. PsCallImageNotifyRoutines

* Section refers to a memory mapping object
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SCOPE

Multiple types of memory:

 MEM_PRIVATE – NtAllocateVirtualMemory

 MEM_MAPPED – NtCreateSection with SEC_COMMIT

 MEM_IMAGE – NtCreateSection with SEC_IMAGE

Need to know what it is and what isn’t:

 Notifies about images, not any executable code

 Want to block non-image code? See Arbitrary Code Guard (ACG)

Obvious bypasses

https://learn.microsoft.com/en-us/defender-endpoint/exploit-protection-reference?view=o365-worldwide#arbitrary-code-guard
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DRIVER PERSPECTIVE

 Registration is documented on MSDN

 The driver provides a function, the system invokes it
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AVAILABLE INFORMATION

 Process ID 1

 Full image name (in NT format) 1

 Base address + size

 Signing level (MS binaries only)

 Some flags

 File object pointer 2

1  As the function parameter

2  In -Ex version
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BEHAVIOR ESSENTIALS

 Post-operation

We do get a base address we can read

 No cancellation

Can still unmap, bearing compatibility issues (no status code change)

 Synchronous

Unlike ETW
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SYNCHRONOUS BUT RACY

Pitfall alert:

 While the calling thread is stuck in kernel mode, the section is 
already mapped and usable by other threads.

Thoughts:

 Might come in handy if we can prolong callback execution…
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RESEARCH QUESTIONS

1. What OS mechanisms are involved?

2. What API surface and opportunities do we have for interacting 
with them?

3. What assumptions does the callback delivery and payload rely on?

4. How can we violate these assumptions?

5. How can we mitigate the damage?
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FILES AND SECTIONS

Mapping is a three-step process:

1. Open a file object – NtOpenFile/NtCreateFile

2. Create a section object from the file object – NtCreateSection with SEC_IMAGE

3. Map the section – NtMapViewOfSection

 Step 2 requires a file

 Step 3 requires a section, but not the file (i.e., we can close it after 2)
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INDIRECTION

Extra levels of indirection:

 Makes sense from the design perspective

 More points of influence

 More caching, more opportunities for mismatch

File on disk File object
Section 
object

Mapped 
memory
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ASSUMPTIONS

OS-level assumptions:

1. The file still exists

2. Its name is possible to query

3. The name is correct

Driver-level assumptions:

4. The file is possible to open

5. Opening yields the correct file

6. The file is possible to read

7. The content corresponds to memory
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ASSUMPTION 1: FILE STILL EXISTS

Idea:  Indirection gives greater control over file lifetime

Caveat: Cannot detach the file object from the section object

Solution: Make sure it doesn’t correspond to anything on disk

Effect: No file, no name to report

File on disk File object
Section 
object

Mapped 
memory
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ATTACK 1A: EARLY DELETION

Problem: Cannot delete a file in use by a section (STATUS_CANNOT_DELETE)

Solution: Mark for deletion before creating a section

Motive: Just like Process Ghosting

Recipe:

File:

Section:

Open Mark for deletion

Create

Close

Map

Time

Callback

Here the 
file is gone

Time

https://www.elastic.co/blog/process-ghosting-a-new-executable-image-tampering-attack
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ATTACK 1B: SELF-DELETION

An NTFS-specific trick from Jonas Lyk for deleting locked files via stream 
rotation:

 Locking applies per-stream

 Streams can be renamed

 Deleting the primary ::$DATA stream deletes all other streams

Open
::$DATA

Rename 
to 

:dummy
Close

Time

Open
the new 
::$DATA

Mark for
deletion Close

Time

https://x.com/jonasLyk/status/1350401461985955840
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ATTACK 1C: INACTIVE TRANSACTION

Idea:  Transacted operations have a scope; can roll back everything.

Motive: Just like Process Doppelgänging

Recipe:

TmTx:

Section:

Open

Create

Close

Map

Time

Callback

Here the 
file is gone

Time

File:

Create

Modify

Roll back

https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf
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ATTACK 1D: UNMOUNTED VOLUME

Idea:  Files belong to a volume

Caveat: Need a disposable volume, preferably without admin

Recipe:

.iso:

Section:

Open

Create

Close

Map

Time

Callback

Here the file is gone

Time

Mount Unmount

File:
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OBSERVING EFFECTS

 Attempting to query the name yields:

 STATUS_FILE_DELETED for attacks 1A and 1B

 STATUS_TRANSACTION_NOT_ACTIVE for attack 1C

 STATUS_VOLUME_DISMOUNTED for attack 1D

Sysmon ignores these events

File on disk File object
Section 
object

Mapped 
memory



Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

21
ASSUMPTION 2: NAME EXISTS

Consider restrictions on filenames:

 Special characters

 Blocked by APIs

 Patched volumes give STATUS_FILE_CORRUPT_ERROR

 Length

 Overflow something?
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LONG NAMES

What is the limit anyway?

260 aka. MAX_PATH?

 No, it’s a legacy Win32 limit

32767?

 Yes, but no

 Also, why this number?
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LONG LONG NAMES

The limit comes from how Windows addresses strings (UNICODE_STRING):

 USHORT (0..65535) bytes in length or max 32767 wide characters
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ATTACK 2A: NAME OVERFLOW

A filename consists of two parts:

 A volume name – \Device\HarddiskVolume1 

 A path on the volume – \Windows\system32

Filesystem drivers deals with the on-volume path

 NTFS allows this part to be up to UNICODE_STRING limit

 The full name (after concatenation) might not fit!

 The file exists but impossible to open by full name. Only relative.
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HOW NAME OVERFLOW LOOKS

 Sysmon either fails with integer overflow or reports a broken name

The handle looks cursed…
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ASSUMPTION 3: THE NAME IS CORRECT 

 Problem with filenames: they are non-owning references

After rename:

 Cached names (strings) become outdated

 But what about queries against file and section objects?
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RENAME TRACKING

Sections:  Always ask the underlying file object

File objects: Depends on the filesystem…

Experiment: Open, rename, query name

Rename on… NTFS \Device\Mup

The same handle Updated Outdated

Another handle Updated Outdated



Attacking Assumptions Behind the Image Load Callbacks :: Denis Nagayuk (diversenok)

28
ATTACK 3A: MUP RENAME

LanmanRedirector (a Multiple UNC Provider) does not track renames

 \Device\Mup\localhost\C$\...

 \\localhost\C$\...

Recipe:

File:

Section:

Open Rename

Create

Close

Map

Callback

Time

Still reports the old name
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HARD LINKS

Hard links:

 Allow multiple names for the same on-disk file

 Creation is similar to renaming but leaves the old name behind

Question:

 Two hard links, refer to the same content. We map both.

 Which name will we get?
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HARD LINKS & SECTIONS

Answer:

 Whichever file object happened to get cached in the section

 Usually not a problem (still the same content)

File on disk

File object
Section 
object

Mapped 
memory

File object
Section 
object

Mapped 
memory
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HARD LINK DELETION

Annoying issue:

 Can hardlink locked files but cannot delete (undo)

 Trying to set FileDispositionInformation returns STATUS_CANNOT_DELETE

Solution:

 FileDispositionInformationEx (since RS1) can

Rules:

 Non-Ex is -Ex  plus FILE_DISPOSITION_FORCE_IMAGE_SECTION_CHECK

 Omitting allows deleting hard links, up until the last one.
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ATTACK 3B: HARD LINK DELETION

Primitive 1: Can choose which hard link name to return from section

Primitive 2: Can delete names until there is only one left

Recipe:

File A:

Section:

Hardlink

Create

Close

Map

Time

Callback

Time

File B:

Open Close

Mark for deletionOpen

Cached name B 

Broken rename 
tracking!
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THE X64DBG BUG REPORT

A user opened an issue (#2990) in x64dbg.

 x64dbg failed to resolve a file reported by an image load debug event

 Looks like the event returns a stale name

The user accidentally discovered an attack on rename tracking.

See the discussion on winsiderss Discord.

https://github.com/x64dbg/x64dbg/issues/2990
https://discord.com/channels/974725285494784042/1321926219318562939
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ATTACK 3C: PARENT RENAME

Problem: Cannot rename a parent directory if there are file handles inside

Solution: Keep a section handle instead

Recipe:

Directory:

Section: Create

Close

Map

Time

Callback

Time

File:

Open Close

Open

Rename

Broken rename 
tracking!
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ASSUMPTION 4: POSSIBLE TO OPEN

Now to driver assumptions. Anything can prevent opening?

 Security descriptors
 A user-mode concern; even admins can bypass

 Sharing mode
 Drivers can bypass

 Can also be self-inflicted

 Like an antivirus that fails to scan a file if somebody has a DELETE handle to it.

 EFS

 Remember the trick for encrypting Defender’s executable so it cannot start?

https://x.com/jonasLyk/status/1571771017919438851
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OPLOCKS

The favorite mechanism for winning race conditions.

 Oplocks can postpone open until acknowledgement (indefinitely)

 Many different types

 Covering open, write, delete

 Batch oplocks

 Everything beyond FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES | SYNCHRONIZE
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ATTACK 4A: OPLOCKS

Idea:  Abuse post-operationness

Caveat: Need to sacrifice a thread

Recipe:

File:

Section:

Open Oplock

Create Map

TimeTime

…

Callback is stuck 
trying to open the file

…

Use memory from 
another thread
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ATTACK 4B: DELETE-PENDING

Idea: Opening files marked for deletion fails with STATUS_DELETE_PENDING

Recipe:

File:

Section:

Open Mark for deletion

Create Map

TimeTime

CloseCancel deletion

Cannot reopen the file
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ASSUMPTION 5: OPENS THE RIGHT FILE

The correct name is not enough. Also need it to be:

 Not ambiguous

 Not redirected

Ways to redirect:

 Junctions

 Namespace symlinks

 Filesystem symlinks
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ATTACK 5A: MUP & JUNCTIONS

Problem: We receive the name after reparse point resolution

Solution: Maybe on NTFS, but not on \Device\Mup

Recipe:

Junction:

Section:

Open (follow)

Create

Close

Map

Time

Callback

Time

File:

Set Modify

Still returns the old name
Which now points 
somewhere else
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ATTACK 5B: TRANSACTIONAL AMBIGUITY

Idea:  Transactions allow one “file” to be in two states at once.

Problem: A filename is not enough without transactional context.

Recipe:

TmTx:

Section:

Open

Create

Close

Map

Time

Callback

Time

File:

Create

Modify

…

The name is 
ambiguous
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ASSUMPTION 6: POSSIBLE TO READ

Want to hash the file? Need to read after opening.

Memory:

 Race and set PAGE_GUARD

File:

 Somehow cause an error?
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ATTACK 6A: BYTE LOCKS

Idea:     NtLockFile can grab ranges for exclusive access

Caveat: Blocks NtReadFile (STATUS_FILE_LOCK_CONFLICT) but not mapped I/O

Recipe:

File:

Section:

Open Lock

Create Map

TimeTime

CloseUnlock

Cannot read
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ASSUMPTION 7: FILE & MEMORY MATCH

Mapped image memory is copy-on-write – extra caching.

More attacks:

 False Immutability (by Gabriel Landau)

 Process Herpaderping (by Johnny Shaw)

This margin is too narrow… Maybe another time

https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
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THE SYSTEM INFORMER CASE

Remember Process Hacker?

 An open-source Windows internals-oriented task manager

 Had a driver for extra capabilities

 The driver requires admin, but MS and vendors were not happy.

System Informer – an updated version under Winsider Seminars & 
Solutions. The new driver respects PPL for modifications but still 
offers great insight.

https://github.com/winsiderss/systeminformer
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DRIVER HARDENING

Goal:  Need to protect from abuse

Problem: Cannot use PPL (not antimalware)

Extras: Want to support plugins

Need to re-invent protections:

 Process & thread handle filtration via Ob- callbacks

 Custom code integrity for plugins via image load notifications

 Two-phase restart

 Mitigations
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ATTACKS THAT WORKED

Challenge: Plant an unsigned plugin to be recognized as signed

Solutions: Name desync, content desync, open redirection.

Example:

1. Prepare an unsigned.dll with a section that cached signed.dll’s name.

2. Start System Informer

3. It will load unsigned.dll but validate signature for signed.dll

4. Since there are no unsigned plugins, the driver allows sensitive operations.
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MITIGATIONS: FUNDAMENTALS

 Always look for the -Ex version of the structure!

 It gives a file object

No, it doesn’t solve all the problems

 The object is in cleanup phase and barely usable

Johnny Shaw and I looked into reopening the file from this object 
(so we don’t have to deal with filenames), but no luck – need a 
handle, not an object pointer (and cannot upgrade).
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MITIGATIONS: QUERYING NAMES

 Try querying harder:

 NtQueryVirtualMemory with MemoryMappedFilenameInformation 
does not have a UNICODE_STRING limit

 Also distinguishes deleted/unmounted/etc. via returned status

 FltGetFileNameInformationUnsafe can return a different result

 Explicitly choose what to do with non-existing files

 Ignore? Abort? Assume the worst?
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MITIGATIONS: OPENING FILES

 Avoid access checks via Zw- and Io- functions

 Bypass sharing mode via IO_IGNORE_SHARE_ACCESS_CHECK

 Be aware of transactions (check them on the file object)

 Use FILE_COMPLETE_IF_OPLOCKED and check for
STATUS_OPLOCK_BREAK_IN_PROGRESS

 Use OBJ_DONT_REPARSE if need to avoid redirection (bearing 
compatibility issues)

 Compare file objects similar to NtAreMappedFilesTheSame
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MITIGATIONS: READING CONTENT

 Just don’t depend on it. Validate memory, not file.

 Be ready to switch to mapped I/O on STATUS_FILE_LOCK_CONFLICT

 Do image coherency checks (see System Informer’s code)
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NOT A VULNERABILITY

Look at Windows Code Integrity

 Provides signing levels and validation for PPL, PP, and kernel drivers

 Does not suffer from these attacks

 Validates memory, cares little about data on disk

 Not too optimistic to grant “success” on signature validation anomalies
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TAKEAWAY

Interesting and powerful mechanism with lots of caveats.

More possibilities than expected.

Tools:

 FileTest – covers 95% of what you need

 Sysmon event ID 7 “Image loaded” for experiments

Thanks:

Johnny Shaw – in-depth dives into mitigations & driver hardening

http://www.zezula.net/en/tools/filetest.html
http://www.zezula.net/en/tools/filetest.html
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon#event-id-7-image-loaded
https://learn.microsoft.com/en-us/sysinternals/downloads/sysmon#event-id-7-image-loaded
https://github.com/jxy-s
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MORE CONTENT

My blog post: Bypassing FileBlockExecutable in Sysmon 14: A Lesson In Analyzing Assumptions
https://www.huntandhackett.com/blog/bypassing-sysmon

Gabriel Landau’s blog post: Introducing a New Vulnerability Class: False File Immutability
https://www.elastic.co/security-labs/false-file-immutability

Johnny Shaw’s blog post: Process Herpaderping
https://jxy-s.github.io/herpaderping/

James Forshaw’s blog post: Windows Exploitation Tricks: Trapping Virtual Memory Access
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html

Gergely Kalman’s talk: The forgotten art of filesystem magic.
https://gergelykalman.com/slides/the_forgotten_art_of_filesystem_magic.pdf

Gergely Kalman’s talk: The missing guide to the security of filesystems and file APIs
https://gergelykalman.com/slides/the_missing_guide_to_filesystem_security_v1.pdf

https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.huntandhackett.com/blog/bypassing-sysmon
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://www.elastic.co/security-labs/false-file-immutability
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://jxy-s.github.io/herpaderping/
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://googleprojectzero.blogspot.com/2021/01/windows-exploitation-tricks-trapping.html
https://gergelykalman.com/slides/the_forgotten_art_of_filesystem_magic.pdf
https://gergelykalman.com/slides/the_missing_guide_to_filesystem_security_v1.pdf


Want me to look at your security product?
Send a message to denis.nagayuk@huntandhackett.com

Thank you for your attention!
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